Bounded-Degree Spanning Trees in Randomly Perturbed Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded-Degree Spanning Trees in Randomly Perturbed Graphs

We show that for any xed dense graph G and bounded-degree tree T on the same number of vertices, a modest random perturbation of G will typically contain a copy of T . This combines the viewpoints of the well-studied problems of embedding trees into xed dense graphs and into random graphs, and extends a sizeable body of existing research on randomly perturbed graphs. Speci cally, we show that t...

متن کامل

Spanning Trees of Bounded Degree Graphs

We consider lower bounds on the number of spanning trees of connected graphs with degree bounded by d. The question is of interest because such bounds may improve the analysis of the improvement produced by memorisation in the runtime of exponential algorithms. The value of interest is the constant βd such that all connected graphs with degree bound ed by d have at least β d spanning trees wher...

متن کامل

Degree Bounded Spanning Trees

In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S ⊆ V(G) of cardinality n(k − 1) + c + 2, there exists a vertex set X ⊆ S of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c − 1. Then G has a spanning tree T with maximum de...

متن کامل

Degree-bounded minimum spanning trees

* to be exact, times the weight of a minimum spanning tree (MST). In particular, we present an improved analysis of Chan’s degree-4 MST algorithm [4]. Previous results. Arora [1] and Mitchell [9] presented PTASs for TSP in Euclidean metric, for fixed dimensions. Unfortunately, neither algorithm extends to find degree-3 or degree-4 trees. Recently, Arora and Chang [3] have devised a quasi-polyno...

متن کامل

Spanning Trees of Bounded Degree

Dirac’s classic theorem asserts that if G is a graph on n vertices, and δ(G) ≥ n/2, then G has a hamilton cycle. As is well known, the proof also shows that if deg(x) + deg(y) ≥ (n− 1), for every pair x, y of independent vertices in G, then G has a hamilton path. More generally, S. Win has shown that if k ≥ 2, G is connected and ∑ x∈I deg(x) ≥ n− 1 whenever I is a k-element independent set, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2017

ISSN: 0895-4801,1095-7146

DOI: 10.1137/15m1032910